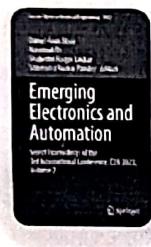


3.4.4 Number of books and chapters in edited volumes / books published per teacher during 2024-25


INDEX

Sr. No.	Description of the paper	Page No.
1.	IoT-Based Secure Healthcare Framework Using Blockchain Technology with Nature-Inspired Optimization Algorithms	2
2.	Intelligent diagnosis of diabetic retinopathy: Leveraging machine and deep learning	3
3.	Machine Learning-Based Functionalities for Business Intelligence and Data Analytics Tools	4
4.	Data Communications and Computer Networks	5
5.	Data Structures using C	6
6.	Analyzing Efficiency and Accuracy of NLP Tasks byBART Transformer	7
7.	Study on environmental and social impacts through electric vehicles	8
8.	Introduction to data-driven intelligent systems	9
9.	Design of a mmWave Reconfigurable Intelligent Surface for Futuristic Wireless Communications", Microwave Devices and Circuits for Advanced Wireless Communication: Design and Analysis	10
10.	Automatic white blood cells counting using OPENCV	11
11.	Key Concepts in AI Models for Remote Sensing Applications	12
12.	MICROPROCESSORS & INTERFACING	13
13.	DESIGN AND ANALYSIS OF GRAPHENE METASURFACES FOR BROADBAND APPLICATIONS	15
14.	DIGITAL ELECTRONICS: PRINCIPLES AND APPLICATIONS	17
15.	Electric Vehicle Technology	19
16.	Power Electronics	20
17.	Distance Measurement by Using Ultrasonic Sensor	24
18.	Quantum Algorithms for Network Analysis in Pathobiology With Quantum Network Medicine	25
19.	Renewable Energy Sources for a Sustainable Worldwide Prospective: Forecasting Future Multi-Sector Sustainable Regulations	26
20.	Machine Learning-Based Inconsistency Detection in Medical Data. In Smart Technologies in Healthcare Management	27
21.	Constraints and impediments to the conduct of extracurricular activities in engineering education during the pandemic – an industrial engineering insight	28
22.	Influence of Stability Improvement Methods Over the Thermal Conductivity of Al2O3-DI Nanofluids	29
23.	Analysis on implantable IoT sensors	30

[Home](#) > [Emerging Electronics and Automation](#) > Conference paper

IoT-Based Secure Healthcare Framework Using Blockchain Technology with Nature-Inspired Optimization Algorithms

Conference paper | First Online: 13 February 2025

pp 269–281 | [Cite this conference paper](#)

Emerging Electronics and Automation
(E2A 2023)

Ramamani Tripathy, P. T. Satyanarayana Murty, Balajee Maram **Ankit Garg, T. Daniya & B. Santhosh Kumar**

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE, volume 1202))

Included in the following conference series:
[International Conference on Emerging Electronics and Automation](#)

91 Accesses

Abstract

This study introduces a novel method for resolving security and privacy issues in IoT-based healthcare systems by combining blockchain technology with optimization

59 Intelligent diagnosis of diabetic retinopathy: Leveraging machine and deep learning

*Balajee Maram^{1,a}, S. Arun Joe Babulo^{2,b}, B. Manivannan^{3,c},
B. Santhosh Kumar^{4,d}, T. Daniya^{5,e}, and Sasibhushana Rao Pappu^{6,f}*

¹Professor, School of Computer Science and Artificial Intelligence, SR University, Warangal, Telangana, India

²Assistant Professor, Department of BCA, K.S.R. College of arts and Science for Women, K.S.R. Kalvi Nagar, Tiruchengode, Namakkal, India

³Assistant Professor, Department of CSE, Vivekanandha College of Engineering for Women, Tiruchengode, India

⁴Professor and Head of Department, Department of Computer Science and Engineering, Guru Nanak Institute of Technology, Ibrahimpatnam, Ranga Reddy, Telangana, India

⁵Assistant Professor, Department of CSE—AI and ML, GMR Institute of Technology, Rajam

⁶Assistant Professor, Department of Computer Science and Engineering, GITAM School of Technology, Visakhapatnam Campus, GITAM (Deemed to be University), India

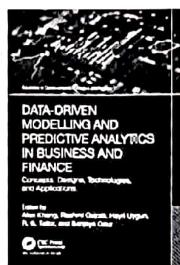
Abstract: This abstract presents a succinct summary of the research proposal entitled “Diagnosis of DR utilizing ML and DL Techniques.” The proposal aims to tackle the urgent matter of DR, which stands as a prominent contributor to visual impairment in individuals with diabetes. The current diagnostic procedures employed in traditional practices are characterized by a manual approach that is both labor-intensive and time-consuming. Consequently, there is a growing demand for automated diagnostic solutions that can provide accurate results. This study is to create a resilient model utilizing ML and DL methodologies in order to improve the effectiveness and precision of diagnosing DR based on retinal pictures. The study proposal delineates various objectives, including the gathering and preprocessing of datasets, the exploration of machine learning techniques for feature extraction, the building of deep learning architectures, and the full evaluation of the presented methods. This study aims to conduct a comparative analysis between the suggested models and established manual diagnosis techniques, thereby offering significant insights into their respective efficacy. It provides a valuable contribution to the area of medicine by introducing a sophisticated diagnostic tool for DR.

Keywords: DR, machine learning, deep learning, retinal images, diagnosis, automated, accuracy, efficiency, medical imaging

1. Introduction

Diabetic retinopathy (DR) is a significant microvascular problem associated with diabetes mellitus and continues to be a prominent cause of vision impairment and blindness on a global scale. The illness predominantly impacts the retina, a sensory tissue involved for converting light into neural signals, so facilitating the process of vision. The increasing

incidence of diabetes, which was expected to be 463 million cases worldwide in 2019, has emphasized the importance of early detection and treatments for DR in order to reduce its potentially severe impact on visual health. Historically, the diagnosis of DR has been dependent on the manual evaluation conducted by experienced ophthalmologists, who analyze fundus pictures. This process involves


^amaram.balajee@gmail.com, maram.c15007@cumail.in; ^barunjoe@ksrwomenarts.edu.in; ^cmanicse1981@gmail.com; ^dbsanthosh.csegnit@gniindia.org; ^edaniya.t@gmrit.edu.in; ^fsasipappu510@gmail.com

DOI: 10.1201/9781003606635-59

< Data-Driven Modelling and Predictive Analytics in Business and Finance (<https://www.taylorfrancis.com/books/mono/10.1201/9781032618845/data-driven-modelling-predictive-analytics-business-finance?refId=27c577a0-8377-451f-a33e-7e34a9e52153&context=ubx>)

Show Path ▾

Chapter

Machine Learning-Based Functionalities for Business Intelligence and Data Analytics Tools

By Rajasekar Rangasamy (/search?contributorName=Rajasekar Rangasamy&contributorRole=author&redirectFromPDP=true&context=ubx), E. Gurumoorthi (/search?contributorName=E. Gurumoorthi&contributorRole=author&redirectFromPDP=true&context=ubx), Sonam Mittal (/search?contributorName=Sonam Mittal&contributorRole=author&redirectFromPDP=true&context=ubx), T. Daniya (/search?contributorName=T. Daniya&contributorRole=author&redirectFromPDP=true&context=ubx), M. S. Nidhya (/search?contributorName=M. S. Nidhya&contributorRole=author&redirectFromPDP=true&context=ubx)

Book [Data-Driven Modelling and Predictive Analytics in Business and Finance \(<https://www.taylorfrancis.com/books/mono/10.1201/9781032618845/data-driven-modelling-predictive-analytics-business-finance?refId=375f74f0-024c-42a3-bf05-e92ae8de481d&context=ubx>\)](https://www.taylorfrancis.com/books/mono/10.1201/9781032618845/data-driven-modelling-predictive-analytics-business-finance?refId=375f74f0-024c-42a3-bf05-e92ae8de481d&context=ubx)

Edition	1st Edition
First Published	2024
Imprint	Auerbach Publications
Pages	17
eBook ISBN	9781032618845

Share

ABSTRACT

< Previous Chapter ([chapters/edit/10.1201/9781032618845-6/digital-payments-varun-kesavan-srinivasan-sakthi?context=ubx](https://www.taylorfrancis.com/chapters/edit/10.1201/9781032618845-6/digital-payments-varun-kesavan-srinivasan-sakthi?context=ubx))
 Next Chapter > ([chapters/edit/10.1201/9781032618845-8/study-domain-specific-approach-business-using-big-data-analytics-visualization-babasaheb-jadhav-pooja-kulkarni-ashish-kulkarni-sagar-kulkarni?context=ubx](https://www.taylorfrancis.com/chapters/edit/10.1201/9781032618845-8/study-domain-specific-approach-business-using-big-data-analytics-visualization-babasaheb-jadhav-pooja-kulkarni-ashish-kulkarni-sagar-kulkarni?context=ubx))

(<https://www.taylorfrancis.com>)

Policies

Back to Top ▾

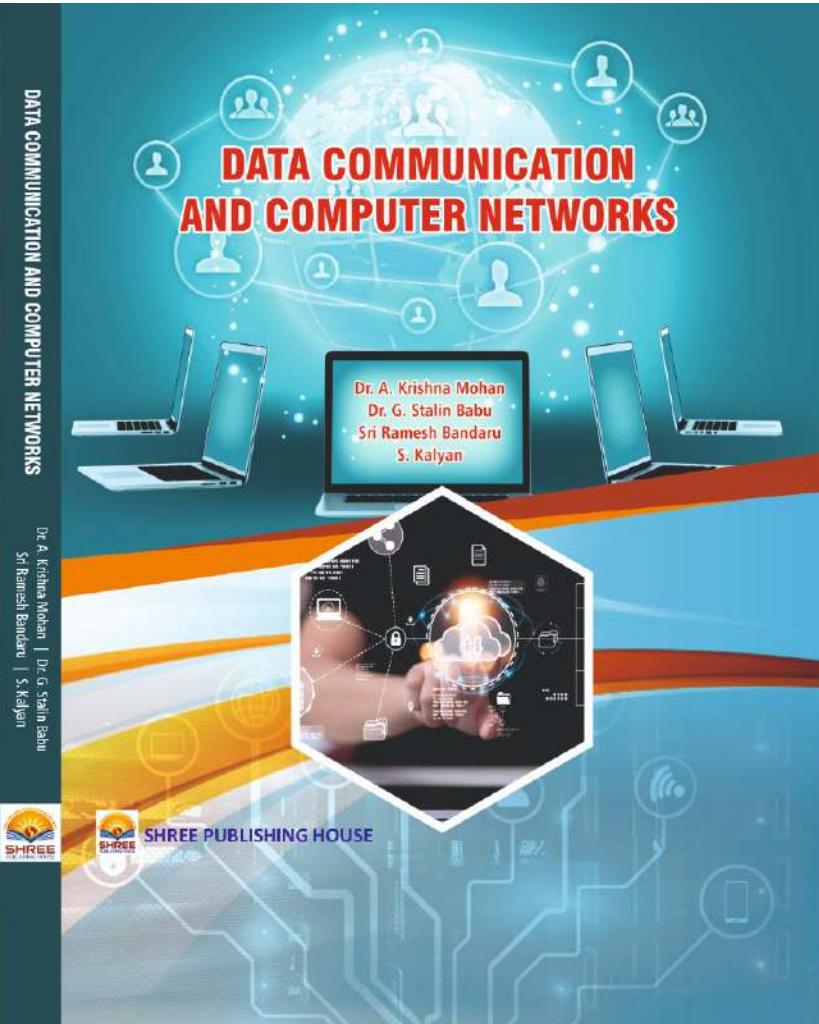
ABOUT THE AUTHORS

Dr. Krishna Mohan is a Postgraduate in Engineering. He received his Ph. D in Computer Science. His doctoral thesis was entitled "Feature Clustering Approach for extraction of descriptive hyperquestion answers". He spent 14 years in IT industry across various companies such as Fujitsu, ManTech and sigma etc. He has been at JNTU for the last 10 years. Presently working as a Professor of Data Science and Computer Networks at JNTU. He is a member of Tissue engineering and a regulated Government University JNTUK, AP, India Awarded twice as best teacher by outgoing students evaluation for the years 2013 and 2016. Expertise in Data Science, Machine Learning, Big data, Data mining, Hadoop, Statistical Analysis Using R and Python, Hadoop tools like Hive, Pig and HBase. Resource person to the faculty at various Universities. Expertise in the development of software using J2EE technologies, Services, JSPs, EJBs, Struts, Spring and web technologies like Java/JSP, HTML, XML and XSL. Extensively involved in Designing Object Oriented systems using MVC architecture, Jakarta struts framework, Spring framework, UML and Rational Rose. Have vast experience in full stack development.

Dr. G. Stalin Babu was awarded a Doctor of Philosophy in Computer science and Engineering at JNTUK-Kakinada University in the year of 2023. M.Tech at JNTU College of Engineering, Hyderabad in the year of 2010. He is qualified in UGC-NET, GATE. Presently working as an Assistant Professor in Computer Science and Engineering at GMER Institute of Technology, Hyderabad. He has 15 years of teaching experience. He published 25 national and international journals like SCI, Scopus and UGC-care. He guided Projects for professional students such as B.Tech, M.Tech. He also got the best NPTEL Motivational award. He attended many National and International Conferences and workshops. He acts as reviewer for JCDIS (Scopus), Springer and various conferences. His area of specialization is Machine learning, Deep Learning and image processing.

Ramesh Bandaru is an experienced Assistant Professor in the Department of Computer Science and Engineering of Aditya Institute of Technology and Management, Teluk, Srikrishna. He graduated in Computer Science and Engineering from JNTU Hyderabad Andhra Pradesh, India and later he Master of Technology in Computer Science and Engineering from JNTU Kakinada Andhra Pradesh, India. With over 15 years of teaching experience, Ramesh has made significant contributions to the academic community, having published a good number of papers in national and international journals, conferences, and symposiums. His areas of expertise include Computer Networks, Machine Learning (ML), Deep Learning (DL), Image Processing, Web Technologies, and Web Mining.

Kalyan Sanilapupu is working as Assistant Professor in the Department of Data Science, Aditya Institute of Technology and Management, Teluk, Srikrishna, Guntur, Andhra Pradesh, India. He had completed his B.Tech in Computer Science and Engineering from JNTU Kakinada in 2010, M.Tech in Computer Science and Engineering from JNTU Kakinada in 2013. He has more than 8 years of teaching experience. Currently pursuing Ph.D. in CSE at JNTUJ, Vizianagaram. His area of research interest includes Artificial Intelligence, Machine Learning, Python Programming, OOAD, Computer Networks and Operating Systems.



Office: Flat No. 23, Block No. 2, LIG-II, APHB Colony, Kommandi, Madhurawada, Visakhapatnam - 530 048 Andhra Pradesh
Ph : 9948250752, 9398778826
E-mail: shreepublishinghouse@gmail.com

₹ 299.00
ISBN : 978-93-95250-33-7

9 789395 250337

DATA COMMUNICATION AND COMPUTER NETWORKS

Dr. A. Krishna Mohan | Dr. G. Stalin Babu
Sri Ramesh Bandaru | S. Kalyan

Rajesh Bunga is an Assistant Professor in the Department of Computer Science and Engineering at Aditya Institute of Technology and Management, Tekkali, Srikantham. He post graduated in computer science and engineering from JNTU, Kakinada, Andhra Pradesh, India. With over 12 years of teaching experience, Rajesh has made significant contributions to the academic community, having published papers in national and international journals. His expertise includes Programming, Computer Networks, DBMS, Web Technologies and Web Mining.

Ramesh Bandaru is a seasoned Assistant Professor in the Department of Computer Science and Engineering at Aditya Institute of Technology and Management, Tekkali, Srikantham. He graduated with a Bachelor of Technology in Computer Science and Engineering from JNTU, Hyderabad, Andhra Pradesh, India, followed by a Master of Technology in Computer Science and Engineering from JNTU in Kakinada, Andhra Pradesh. Ramesh, who has over 15 years of teaching experience, has contributed significantly to the academic community by publishing more than 20 articles in national and international journals, conferences, and symposiums. His expertise spans Computer Networks, Database Management Systems, Machine Learning (ML), Deep Learning (DL), Image Processing, Web Technologies, Web Mining and Programming.

G. Vijay Kumar is an experienced Assistant Professor in the Department of Computer Science and Engineering at Aditya Institute of Technology and Management, Tekkali, Srikantham. He graduated in Computer Science and Engineering from JNTU, Hyderabad, Andhra Pradesh, India, and later his Master of Technology in Computer Science and Engineering from JNTU, Kakinada, Andhra Pradesh, India. With over 17 years of teaching experience, he has made significant contributions to the academic community, having published many papers in national and international journals and conferences. His expertise includes Operating Systems, Computer Networks, Network Security, Cloud Computing and Cyber Security.

Dr. G. Stalin Babu was awarded a Doctor of Philosophy in Computer science and Engineering at JNTU-Kakinada University in the year of 2023. M.Tech at JNTU College of Engineering, Hyderabad in the year of 2010. He is qualified in UGC NET, GATE. Presently working as an Assistant Professor in Computer Science and Engineering at GMR Institute of Technology, Rajam. He has 15 years of teaching experience. He published 25 national and International journals like SCI, Scopus and UGC care. He guided Projects for professional students such as B.Tech, M.Tech. He also got the best NPTEL Motivation award. He attended many National and International Conferences and workshops. He acts as reviewer for IJCDs (Scopus), Springer and various conferences. He is specialization in Machine learning, Deep Learning and image processing.

 HSRA
PUBLICATIONS

amazon

flipkart

amazon kindle

Google

HSRA
PUBLICATIONS

DATA STRUCTURES USING C

Data Structures using 'C'

Bunga Rajesh
Ramesh Bandaru
Gangu Vijay Kumar
Dr. G. Stalin Babu

[Home](#) > [Data Science and Big Data Analytics](#) > Conference paper

Analyzing Efficiency and Accuracy of NLP Tasks by BART Transformer

| Conference paper | First Online: 16 May 2025

| pp 251–263 | [Cite this conference paper](#)

Data Science and Big Data
Analytics
(IDBA 2024)

[Attada Venkataramana](#), [Poonam V. Tijare](#) & [Paras Nath Singh](#)

Part of the book series: [Learning and Analytics in Intelligent Systems \(\(LAIS, volume 43\)\)](#)

Included in the following conference series:
[International Conference on Data Science and Big Data Analysis](#)

191 Accesses

Abstract

A novel kind of neural network architecture is called a transformer. The HuggingFace transformer models offer a user-friendly way to deploy few top-performing Natural Language Processing (NLP) models. In a number of NLP applications, including text

Chapter 13

Study on Environmental and Social Impacts Through Electric Vehicles

T. Surulivel Rajan

 <https://orcid.org/0000-0003-0977-2763>

Department of Mechanical Engineering, Prince Shri Venkateshwara Padmavathy Engineering College, Chennai, India

C. R. Edwin Selva Rex

 <https://orcid.org/0000-0003-1090-1841>

Department of Electrical and Electronics Engineering, Vignana Bharathi Institute of Technology, India

Dhiresh Someshrao Shastri

 <https://orcid.org/0009-0000-6302-2002>

Department of Mechanical Engineering, Dr. Vishwanath Karad MIT World Peace University, Pune, India

GBSR Naidu

Department of Electronics and Communication Engineering, GMR Institute of Technology, Vizianagaram, India

C. Senthil Kumar

 <https://orcid.org/0000-0001-6137-1858>

School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore, India

S. Boopathi

Department of Mechanical Engineering, Muthayammal Engineering College, Rasipuram, India

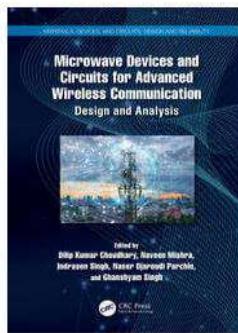
ABSTRACT

Transitioning to electric vehicles (EVs) can significantly reduce environmental and social impacts, improve air quality, and enhance social equity, with higher energy efficiency when integrated with renewable sources. Electric vehicles significantly

DOI: 10.4018/979-8-3693-4314-2.ch013

Introduction to data-driven intelligent systems

*G. Vimala Kumari, Babji Prasad Chapa,
N. Krishna Chaitanya, Rupesh G. Mahajan, and
Minal Shahakar*


1.1 INTRODUCTION

In an era defined by technological innovation and unprecedented data availability, the landscape of intelligent systems has undergone a profound transformation. The convergence of advanced computing power, vast datasets, and sophisticated algorithms has ushered in an era where machines can learn, adapt, and make informed decisions autonomously. This chapter serves as a gateway to the realm of data-driven intelligent systems, offering readers a comprehensive introduction to the fundamental concepts, methodologies, and applications that underpin this dynamic and rapidly evolving field. The basic block diagram of a data-driven system is shown in Figure 1.1.

The block diagram shows the steps involved in understanding data-driven intelligence. The process starts with data acquisition, which involves the collection of data from a variety of sources. The collected data is then cleaned and preprocessed to prepare it for analysis. Features are then engineered from the data to create variables that are informative and relevant to the problem that is being solved. The next step is to train a machine learning model. The model learns the relationships between the features and the target variable. The model is then evaluated to see how well it performs on a held-out set of data. If the model performs well, it can be deployed to production. This means that the model is used to make predictions on new data. The predictions can then be used to make decisions.

1.1.1 Evolution of intelligent systems

The roots of intelligent systems [1] can be traced back to early rule-based systems that followed predetermined instructions to perform specific tasks. However, the limitations of such systems became increasingly evident as they struggled to handle complex, uncertain, and ambiguous real-world scenarios. The breakthrough came with the advent of data-driven approaches, which harnessed the power of data to enable systems to learn and improve from experience. This chapter explores the historical journey that has culminated in the data-driven intelligent systems we encounter today.

Chapter

Design of a mmWave Reconfigurable Intelligent Surface for Futuristic Wireless Communications

By [B Anil Babu](#) , [BTP Madhav](#) , [P Ravi Kumar](#) , [T Anil Kumar](#)

Book [Microwave Devices and Circuits for Advanced Wireless Communication](#)

Edition 1st Edition

First Published 2024

Imprint CRC Press

Pages 14

eBook ISBN 9781032656021

Share

Chapter 17

Automatic White Blood Cells Counting Using OPENCV

Prabhakar Telagarapu

 <https://orcid.org/0000-0003-3287-6325>

GMR Institute of Technology, India

Babji Prasad Chapa

GMR Institute of Technology, India

Sahithi Reddy Pullanagari

University of Sydney, Australia

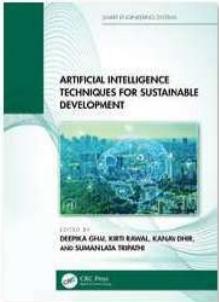
ABSTRACT

Counting the number of white blood cells (WBCs) is a crucial procedure in medical laboratories for diagnosing various diseases. However, manual counting can be time-consuming and susceptible to errors. To overcome this, a research study has proposed an automated approach for WBC counting in sampled images using OpenCV, an open-source computer vision library. The authors developed an algorithm that segments the WBCs from the background by utilizing preprocessing techniques, followed by edge detection (canny edge detection) to identify the cells' boundaries. The number of cells is counted by implementing a simple circular Hough transform method. For this, the authors approached and collected datasets from ALL-IDB team for sampled images to test the proposed method. The proposed method has achieved high accuracy rates and outperformed manual counting in terms of speed and efficiency. The developed approach has the potential to be integrated into existing medical laboratory workflows, automating the WBC counting process and improving the diagnosis and treatment of various diseases.

1. INTRODUCTION

Reddy, V. H. (2014) proposed blood plays a major role in the human body. Noor, A. M., et.al (2020) developed blood is a complex fluid that contains various types of cells. Poomcokrak, J., & Neatpisarnvanit, C. (2008) presented and Hiremath, P. S., et.al., (2010) described white blood cells are comprised of monocytes, lymphocytes, neutrophils, eosinophils, basophils, and macrophages, each with different properties and functions. Anisha, P. R., Reddy, et.al (2022) performed comparison to white blood cells.

DOI: 10.4018/979-8-3693-5893-1.ch017


Inbox - prasadnagandla@gmail.com | YouTube | Mail - Dr. Nagandla Prasad - Outl... | Key Concepts in AI Mod...

← → ⌂ https://www.taylorfrancis.com/chapters/edit/10.1201/9781003546382-8/key-concepts-ai-models-remote-sensing-applications-jami...

VHDL COMPLETE N... | KL-ONLINE - Meeti... | Google | Form 5 - DECLARAT... | KL ERP | Keep It! | Electromagnetic Fiel... | June 2014 Paper 3

About Us Subjects ▾ Browse ▾ Products ▾ Request a trial Librarian Resources What's New

Home > Computer Science > Artificial Intelligence > Human Computer Intelligence > Artificial Intelligence Techniques for Sustainable Development > Key Concepts in AI Models for Remote Sensing Applications

Chapter

Key Concepts in AI Models for Remote Sensing Applications

By *Jami Venkata Suman, Mamidipaka Hema, Babji Prasad Chapa, Jhansi Bharathi Madavarapu*

Book [Artificial Intelligence Techniques for Sustainable Development](#)

Edition	1st Edition
First Published	2024
Imprint	CRC Press
Pages	12
eBook ISBN	9781003546382

 Share

ABSTRACT

MICROPROCESSORS & INTERFACING

MICROPROCESSORS & INTERFACING

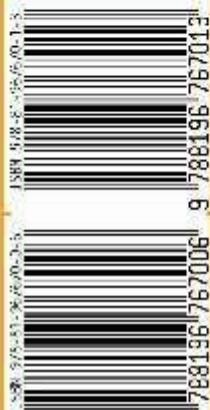
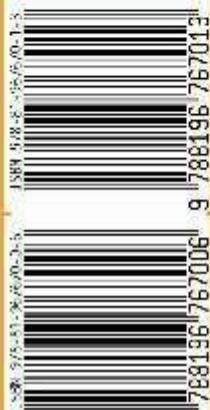
About the Authors

Dr. Mamidipaka Hema working as an Assistant Professor in the Department of Electronics and Communication Engineering at JNTU-GV College of Engineering, Vizianagaram. She completed AWE in Electronics and Communication Engineering and completed Masters in Engineering in Digital Systems and Computer Electronics at JNTUA, Ananthapur, Andhra Pradesh, India. She received PhD in Department of ECE at JNTUK, Kakinada, Andhra Pradesh, India. She is in the field of Teaching of JNTU-GV, Vizianagaram, Andhra Pradesh, India. She is in teaching profession for more than 15 years. She has presented 30 number of papers in National and International Journals, Conference and Symposiums. She has 3 patents published and 3 patients grant, has 3 books published. Her main area of interest includes Embedded systems, Biometrics, Gait analysis, Signal, Image & Video processing. She is a Senior Member of the IEEE, life member of IET and member of IET.

Dr. Jami Venkata Suman working as an Assistant Professor in the Electronics and Communication Engineering Department at GMR Institute of Technology, Rajam. He graduated in Electronics and Communication Engineering at Visvesvaraya Technological University, Karnataka, India. He secured Master of Technology in VLSI System Design at JNTUH, Andhra Pradesh, India. He secured Ph.D in Electronics and Communication Engineering at GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India. He is in teaching profession for more than 16 years. He has published more than 60 papers in National and International Journals, Conferences and Symposiums. He has 12 patents published, 15 patents granted and 8 books published. His main area of interest includes Low Power VLSI Design, FPGA Implementation, VLSI Signal Processing, Digital IC Design and Semiconductor Device Modeling.

Dr. Madhavi Mallam working as a Professor and Head in the Department of Electronics and Communication Engineering at PES Institute of Technology and Management, Srivamogg, Karnataka. She graduated in Electronics and Communication Engineering at Jawaharlal Nehru Technological University, Hyderabad, Andhra Pradesh, India. She secured Master of Technology in DECS at JNTUH, Andhra Pradesh, India. She secured PhD in Electronics and Communication Engineering at JNTUK, Kakinada, Andhra Pradesh, India. She is in teaching profession for more than 16 years. She has published more than 30 papers in National and International Journals, Conferences and Symposiums. She has 3 patents published, 3 patents granted and also 4 books published. She has obtained funding projects grants worth Rs. 50,00,000 from different funding agencies DST, VTU, and VGST. Her main area of interest includes Signal Processing, Communications, Digital IC Design and Semiconductor Device Modeling.

Dr. Mamidipaka Hema



Dr. Jami Venkata Suman | Dr. Madhavi Mallam

DECCAN INTERNATIONAL ACADEMIC PUBLISHERS

A NAME REGISTERED COMPANY ISBN 9781316073543 CERTIFIED COMPANY

INDIA

WEBSITE: DECCANINTERNATIONALPUBLISHERS.COM E-MAIL: DECCAN@GMAIL.COM

Dr. Mamidipaka Hema

Dr. Jami Venkata Suman
Dr. Madhavi Mallam

MICROPROCESSORS & INTERFACING

Authors

Dr. Mamidipaka Hema

Assistant Professor

*Department of Electronics and Communication Engineering
UCEV-JNTUK, Vizianagaram*

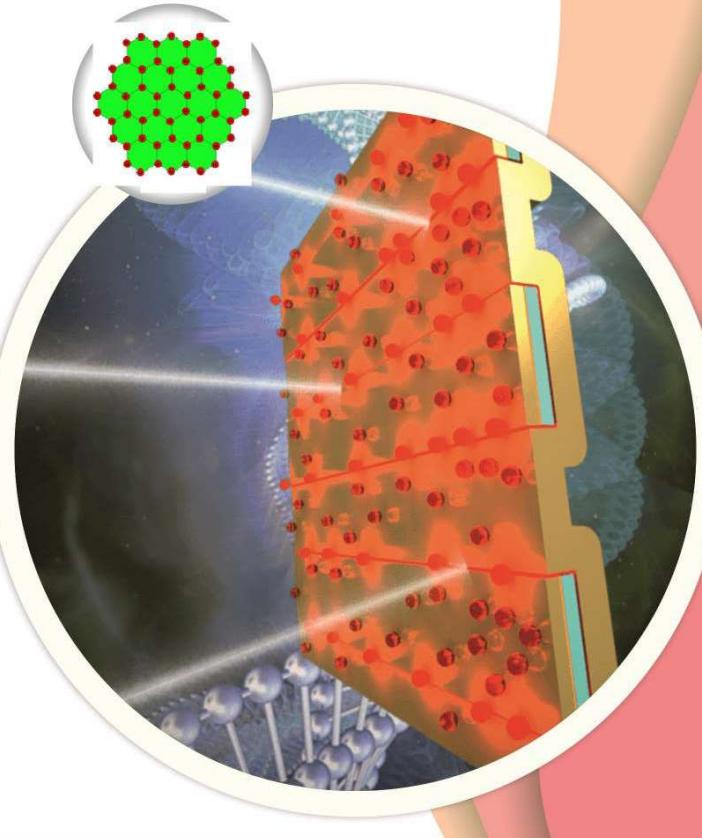
Dr. Jami Venkata Suman

Assistant Professor

*Department of Electronics and Communication Engineering
GMR Institute of Technology, Rajam*

Dr. Madhavi Mallam

Professor and Head


*Department of Electronics and Communication Engineering
PES Institute of Technology and Management, Shivamogga, Karnataka.*

**DECCAN INTERNATIONAL ACADEMIC
PUBLISHERS**

REGISTERED UNDER MSME
GOVERNMENT OF INDIA

INDIA

DESIGN AND ANALYSIS OF GRAPHENE METASURFACES FOR BROADBAND APPLICATIONS

Dr. Nagandla Prasad
Dr P. Pardhasaradhi

DESIGN AND ANALYSIS OF GRAPHENE METASURFACES FOR BROADBAND APPLICATIONS

About the Authors

Dr. Nagandla Prasad completed his Ph.D from Koneru Lakshmaiah Education Foundation (KL University), in 2023. He completed his M.Tech from JIET in 2014 and completed B.Tech from BET in 2012. He has published 15 articles, 2-patents on various research domains. Mainly, his research areas include antennas, meta surfaces, Terahertz domain, liquid crystals, etc. Presently, he is working as a senior assistant professor in ECE department, GMRIT, RAJAM-532127, Andhra Pradesh, India.

Dr. P. Pardhasaradhi was born in Andhra Pradesh, India. He received Ph.D degree in 2012 from Acharya Nagarjuna University (ANU), Guntur, India. He is currently working as a professor with the Department of Electronics and Communication Engineering, and working as Associate dean (R&D, Publications), Koneru Lakshmaiah Education Foundation (Deemed to be University), Guntur, India. He has authored over 124 international research publications and published 4 patents. Under his guidelines, 8 students awarded their Ph.D degrees and currently 2 students are pursuing their Ph.D degrees. Mainly his research areas include antennas, meta surfaces, Terahertz domain, liquid crystals, etc.

LIBRO INTERNATIONAL PUBLISHERS
A NSG REGISTERED COMPANY | ISO 9001:2015 CERTIFIED COMPANY
INDIA
9 788197519291

**DESIGN AND ANALYSIS OF GRAPHENE
METASURFACES FOR BROADBAND
APPLICATIONS**

LIBRO INTERNATIONAL PUBLISHERS

REGISTERED UNDER MSME
GOVERNMENT OF INDIA

INDIA

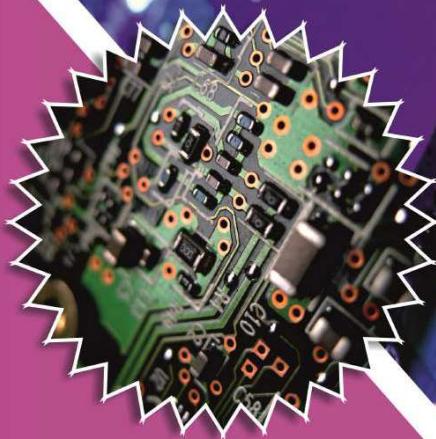
DIGITAL ELECTRONICS:

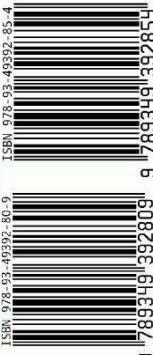
Principles and Applications

About the Authors

Dr.K.Babulu working as a Professor in the Electronics and Communication Engineering Department at JNTU-GV College of Engineering Vizianagaram (A). He graduated in Electronics and Communication Engineering at Andhra University, Visakhapatnam. He secured Master of Technology from REC, Warangal. He obtained Ph.D in the area of VLSI & Embedded System Design from JNTUA, Anantapur, Andhra Pradesh, India. He is in teaching profession for more than 25 years. He has published more than 100 papers in National and International Journals, Conferences and Symposia. He is senior member of IEEE and life member of IET. His main area of interest includes VLSI & Low Power VLSI Design, VLSI Signal Processing, FPGA Implementation and Embedded systems.

Dr.Ravva Gurunadha working as an Associate Professor in the Department of Electronics and Communication Engineering at JNTU-GV College of Engineering, Vizianagaram (A). He completed B.E in Electronics and Communication Engineering from Andhra University College of Engineering (AULCE), Visakhapatnam and completed M.Tech in Instrumentation and Control Systems from JNTU Kakinada, Andhra Pradesh, India. He received PhD in Department of ECE at JNTUGV, Vizianagaram, India. He is in the field of Teaching at JNTU-GV College of Engineering (A), Vizianagaram, and Andhra Pradesh, India. He is in teaching profession for more than 20 years. He has presented 30 number of papers in National and International Journals, Conference and Symposia. His main area of interest includes Embedded systems, Biometrics, Signal, Image & Video processing. He is a Member of the IEEE, life member of IET and member of IET.


Dr.M.Hema working as an Assistant Professor in the Department of Electronics and Communication Engineering at JNTU-GV College of Engineering Vizianagaram (A). She completed AMIE in Electronics and Communication Engineering and completed Masters in Engineering in Digital Systems and Computer Electronics at JNTUA, Anantapur, Andhra Pradesh, India. She received PhD in Department of ECE at JNTUK, Kakinada, Andhra Pradesh, India. She is in teaching profession for more than 15 years. She has presented 30 number of papers in National and International Journals, Conference and Symposia. Her main area of interest includes Analog & Digital Electronics, Microprocessors, Embedded systems, Biometrics, Gait analysis, Signal, Image & Video processing. She is a Senior Member of the IEEE, life member of IET and member of IET.


Dr.Jami Venkata Suman working as an Associate Professor in the Electronics and Communication Engineering Department at GM Institute of Technology, Rajam. He graduated in Electronics and Communication Engineering at Visvesvaraya Technological University, Karnataka, India. He secured Master of Technology in VLSI System Design at JNTUH, Andhra Pradesh, India. He secured PhD in Electronics and Communication Engineering at GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India. He is in teaching profession for more than 19 years. He has published more than 100 papers in National and International Journals, Conferences and Symposia. He has 12 patents published and 25 patents granted, has 10 books published. He is life member of ISTE, senior member of IEEE. His main area of interest includes Low Power VLSI Design, Signal Processing, Digital IC Design, FPGA Implementation and Semiconductor Device Modeling.

Dr. K. Babulu | Dr. Ravva Gurunadha
Dr. M. Hema | Dr. Jami Venkata Suman

Dr. K. Babulu
Dr. Ravva Gurunadha
Dr. M. Hema
Dr. Jami Venkata Suman

GCS PUBLISHERS
A MSME REGISTERED COMPANY ISO 9001 2015 CERTIFIED COMPANY
INDIA
WEBSITE:GCSMPUBLISHER.COM

DIGITAL ELECTRONICS: PRINCIPLES AND APPLICATIONS

GCS PUBLISHERS

REGISTERED UNDER MSME
GOVERNMENT OF INDIA

INDIA

Electric Vehicle Technology

Dr. Mohd. Asif Gandhi is working as Associate Professor in Department of Mechanical Engineering at Anjuman-I-Islam's Kalsekar Technical Campus, Panvel, India, with additional charge as Controller of CIRDPI Cell (Centre of IPR; R&D Projects; Publications and Internal Revenue Generation) for the entire campus. He was formerly the HoD of Mechanical Engineering Department. He is a B.E. (Production Engineering) from M.H. Saboo Siddik College of Engineering; a M.E. (Production Engineering) (Specialization in Manufacturing Engineering) from Fr. Conceicao Rodrigues College of Engineering both affiliated to University of Mumbai; and a Ph.D. in Industrial Engineering from NITIE (now called IIM Mumbai), Mumbai, India. He has worked 10 years in the industry and 17 years in academia. He has got many publications to his credit in highly ranked journals. He holds 10 patents and 4 copyrights. He has authored 8 books and has 50 certifications to his credit.

Dr. J.S.V.Siva Kumar, currently working as Associate Professor, Department of Electrical and Electronics Engineering, GMR Institute of Technology, Rajam, Andhra Pradesh – 532127. He graduated with a Ph.D. in Electrical Engineering from Andhra University, Visakhapatnam, M.Tech in Power Electronics from Vellore Institute of Technology, Vellore and B.tech in Electrical and Electronics Engineering from GMR Institute of Technology, Rajam. Along with he has over thirty papers published in national and international journals. He has more than 18 years of teaching and research experience. He is a member of ISTE and organized conference, workshops and seminars.

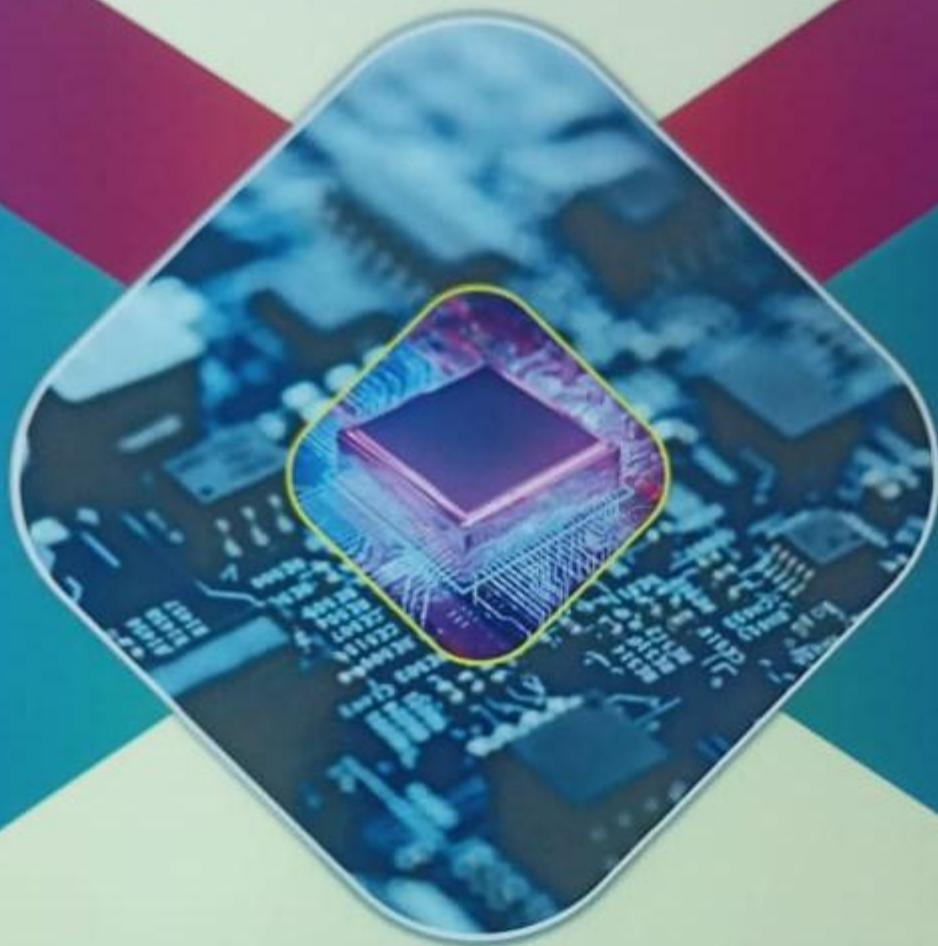
Dr. Ashes Maji is an Assistant Professor in the Department of Mechanical Engineering, AEC, Asansol. He completed his PhD in Refined Nonlinear Theory of Laminated Composite Plates Based on Shear Deformation Theories from ME Department in IIT(ISM) Dhanbad. He has 18 years of teaching and 04 years of industry experience and published a total of 20 technical papers in reputed international and national journals and conference proceedings. Dr. A. Maji has also been involved in various consultancy works in collaboration with nearby industries. His research areas include nonlinear behaviour of composite materials, active vibration control and delamination of composite materials.

Dr. S. Sakthivel Padaiyatchi received the Degree in Electrical and Electronics Engineering and Master Degree in Power Systems Engineering in 1999 and 2002 respectively. He obtained the Ph.D. Degree in Electrical Engineering faculty from Anna University, Chennai, Tamil Nadu, India in 2014. Currently, He is a Professor of Electrical and Electronics Engineering at Nehru Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India. He has 23 years of experience in teaching electrical engineering courses. His research areas of interest are power system control, optimization techniques, power system deregulation, FACTS and voltage stability improvement.

ISBN 978-93-56455-15-6
9 789348 655158

Electric Vehicle Technology

Dr. Mohd. Asif Gandhi, Dr. J.S.V.Siva Kumar
Dr. Ashes Maji, Dr. S. Sakthivel Padaiyatchi


A Text Book of

Electric Vehicle Technology

Dr. Mohd. Asif Gandhi
Dr. J.S.V.Siva Kumar
Dr. Ashes Maji
Dr. S. Sakthivel Padaiyatchi

Power Electronics

**Putchakayala Yanna Reddy | Dr. K. Radha Lakshmi
Dr G Chandra Sekhar | Dr. M. Vijayalakshmi**

About the Authors

Putchakayala Yanna Reddy Working as Assistant Professor in the Department of Electrical and Electronics Engineering in Bharat Institute of Engineering and Technology at Mangalpally, Ibrahimpatnam, Hyderabad, Ranga Reddy District - 501 510. He received the Bachelor's Degree (B.Tech) in Electrical and Electronics Engineering (EEE) in the year 2009 from Jawaharlal Nehru Technological University (JNTU) Hyderabad, India. He received the Master's Degree (M.Tech) in Electrical and Electronics Engineering with Specialization in Power Electronics (PE) in the year 2013 from Jawaharlal Nehru Technological University (JNTU) Hyderabad, India. He is Pursuing Ph.D., in Electrical Engineering Department at National Institute of Technology (NIT), Silchar, Cachar, Assam-788010, India. He is in the field of Research in "Hybrid AC/DC Microgrid Control with Soft Computing Techniques" since 2021 at National Institute of technology (NIT), Silchar, Cachar, Assam-788010, India. He has more than 14 years teaching Experience. He has Authored 03 Textbooks and Published 06 Book Chapters and filed 04 Patents and he has Presented more than 10 Research Papers in International Journals and International Conferences. His main area of Research interest includes Micro-grid Operation and Control Techniques, Renewable Energy Systems Integration, Electric grid and Electric Vehicle Integration and Soft Computing Techniques. He is a Life member of Prestigious Associations like Indian Society for Technical Education (ISTE), International Association of Engineers (IAENG), Asian Society of Researchers (ASR), Institute of Research Engineers & Doctors (IRED), International Computer Science and Engineering Society (ICSES), Teaching and Education Research Association (TERA) and All India Council for Technical Skill Development (AICTSD).

Dr. K. Radha Lakshmi working as a Assistant Professor(SG) in the Electrical and Electronics Engineering Department at Solamalai College of Engineering, Madurai. She graduated in Engineering at Syed Ammal Engineering College, Ramanathapuram, Tamilnadu, India. She secured Master of Engineering in Power Electronics and Drives at Alagappa Chettiyar College of Engineering and Technology, Karaikudi, Tamilnadu, India. She secured Ph.D., in Electrical Engineering Department at Anna University, Chennai, Tamilnadu, India. She is in the field of Electrical and Electronics Engineering at Solamalai College of Engineering, Madurai, Tamilnadu, India. She is in teaching profession for more than 12 years. She has presented 13 papers in National and International Journals, Conference and Symposiums. His main area of interest includes Power Electronic and Drives.

Dr. G. Chandra Sekhar working as Professor in the Department of Electrical and Electronics Engineering at GMR Institute of Technology, Rajam, Andhra Pradesh. He graduated in Electrical and Electronics Engineering at SRKR. Engg. College, Bhimavaram, Andhra Pradesh, India. He secured Master of Technology in EEE Department at JNTU, Kakinada, Andhra Pradesh, India. He secured Ph.D., in Faculty of Electrical Engineering at JNTU, Hyderabad, Andhra Pradesh, India. He is in the field of Power system protection, Renewable energy, at GMR Institute of Technology, Rajam, Andhra Pradesh, India. He is in teaching profession for more than 22 years. He has presented 40 papers in National and International Journals, Conference and Symposiums. His main area of interest includes Power system protection and Electrical vehicle technology.

Dr. M. Vijayalakshmi working as an Associate Professor in the ECE Department at G.Narayanaamma Institute of Technology and Science, Hyderabad. She graduated In Bachelor of Engineering In ECE at Chaitanya Bharathi Institute of Technology, Hyderabad, Telangana, India. She secured Master of Engineering in ECE Department at Osmania University, Hyderabad, Telangana India. She Completed her Ph.D., in ECE Department at JNTHH, Hyderabad, Telangana, India. Her area of research in Wireless Networks. She taught various B.Tech and M.tech subjects in the area of Electronics, Digital, Communications & wireless Networks .She is in teaching profession for more than 24 years. She has presented 30 papers in National and International Journals, Conference and Symposiums. His main area of interest includes Wireless communications and networks and Optical Communications.

Book Title	POWER ELECTRONICS
Authors	Putchakayala Yanna Reddy Dr.K.Radha Lakshmi Dr G Chandra Sekhar Dr.M.Vijayalakshmi
DOI	10.5281/zenodo.13857522
Book Subject	POWER ELECTRONICS
Book Category	Authors Volume
Copy Right	@ Authors
Edition	First Edition, Sep 2024
Book Size	B5
Price	Rs.999/-

Published by
GCS PUBLISHERS
 Registered Under MSME
 Government of India
INDIA

ISBN Supported by International ISBN Agency,
 United House, North Road, London, N7 9DP, UK. Tel. + 44 207 503 6418 &
 Raja Ram Mohan Roy National Agency for ISBN
 Government of India, Ministry of Human Resource Development, Department
 of Higher Education, New Delhi - 110066 (India)

ISBN: 978-81-979968-3-2

ISBN 978-81-979968-3-2

9 788197 996832

e-ISBN: 978-81-979968-1-8

ISBN 978-81-979968-1-8

9 788197 996818

POWER ELECTRONICS

Authors

Putchakayala Yanna Reddy

Assistant Professor

Department of Electrical and Electronics Engineering

Bharat Institute of Engineering and Technology

Mangalpally, Ibrahimpatnam, Hyderabad, Ranga Reddy District - 501 510.

Dr.K.Radha Lakshmi

Assistant Professor(SG)

Department of Electrical and Electronics Engineering

Solamalai College of Engineering, Madurai

Dr G Chandra Sekhar

Professor

Department of Electrical and Electronics Engineering

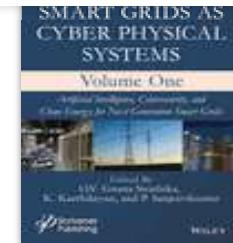
GMR Institute of Technology, Rajam, Andhra Pradesh.

Dr.M.Vijayalakshmi

Associate Professor

Department of Electrical and Electronics Engineering

G.Narayanaamma Institute of Technology and Science, Hyderabad.


[Back](#)

Distance Measurement Using Ultrasonic Sensor

Rajesh Babu Damala, Rajesh Kumar Patnaik, Praveen Korla

Book Editor(s): O.V. Gnana Swathi, K. Karthikeyan, Sanjeevikumar Padmanaban

First published: 27 April 2024 | <https://doi.org/10.1002/9781394261727.ch23>

Physical Systems: Smart Grids Paving the Way to Smart Cities

 References
 Related
 Information

Summary

This chapter describes an ultrasonic sensor that can gauge how far certain motor vehicle points are from the ground. The sensor works by tracking how long an ultrasonic pulse takes to travel after being reflected by the ground. A threshold comparator can quickly identify reflected pulses that are generated using a limited optimization method. A sub-wavelength detection may be made using a method like this that takes response of frequency into consideration. At rest or at moderate speeds, experimental testing at a frequency of 40 kHz. The sensor is nevertheless functional at speeds of maximum 30 m/s with error of 1 mm. The sensor can self-adapt to diverse conditions to provide optimum results and is made up of inexpensive components, making it appropriate for first-car equipment in many situations.

References

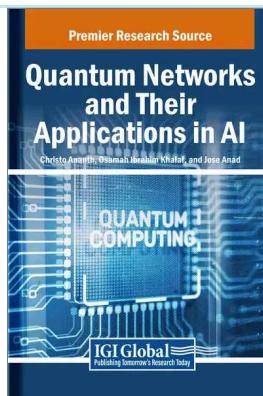
D. Wobschall, M. Zeng and B. Srinivasaraghavan, "An Ultrasonic/Optical Pulse Sensor for Precise Distance Measurements," *2005 Sensors for Industry Conference*, 2005, pp. 31 - 34, doi: [10.1109/SICON.2005.257865](https://doi.org/10.1109/SICON.2005.257865).

Recommended

[Development of high-frequency-type MEMS ultrasonic array sensor using P\(VDF/TrFE\) thin films](#)

Tsunehisa Tanaka, Shuichi Murakami, Mayumi Uno

[Electronics and Communications in Japan](#)


[Design of Arduino UNO-Based Novel Multi-Featured Robot](#)

Jaspinder Kaur, Rohit Anand, Nidhi Sindhwan, Ajay Kumar Sharma, Vishal Jain

Up to 50% off Thousands of Research Books (/search/?cid=19&rf=1)

Offer valid through October 31, 2025 (/search/?cid=19&rf=1)

Quantum Algorithms for Network Analysis in Pathobiology With Quantum Network Medicine

M. Rambabu (GMR Institute of Technology, India), S. Kavitha (Excel Engineering College, India), C. Suganthi (Excel Engineering College, India), S. B. G. Tilak Babu (Aditya Engineering College, India), Manoj Sakharam Ishi (R.C. Patel Institute of Technology, India), and Mrunalini Harish Kulkarni (Independent Researcher, India)

Source Title: Quantum Networks and Their Applications in AI (/book/quantum-networks-their-applications/341798)

Copyright: © 2024 | Pages: 21

DOI: 10.4018/979-8-3693-5832-0.ch016

OnDemand: \$37.50
(Individual Chapters)

Forthcoming: Available 08/15/2025

Current Special Offers

could possibly be used to solve important problems in network research, like finding larity, and graph isomorphism. When it comes to network analysis, optimization problems can be solved using quantum algorithms like Grover's search algorithm or quantum-inspired techniques like the quantum annealing algorithm. This list has methods for lowering noise in quantum systems, the creation of quantum models for understanding how quantum-enhanced discoveries affect living things. Finally, new models are being created all the time in the dynamic field of quantum network medicine. These models help us learn more about pathobiological networks. It is possible to improve healthcare outcomes by understanding complex biological processes in new ways.

Chapter Preview

t

rch terms

Reset

Chapter 4

Renewable Energy Sources for a Sustainable Worldwide Prospective: Forecasting Future Multi-Sector Sustainable Regulations

Shweta Katre

Bhilai Institute of Technology, India

Jayasri Kotti

 <https://orcid.org/0000-0001-6501-1948>

GMR Institute of Technology, India

Namra Joshi

 <https://orcid.org/0000-0003-0515-3156>

SVKM'S Institute of Technology, India

Nagorao Pawar

MGM's College of Engineering and Technology, India

Sabyasachi Pramanik

 <https://orcid.org/0000-0002-9431-8751>

Haldia Institute of Technology, India

Ankur Gupta

 <https://orcid.org/0000-0002-4651-5830>

Vaish College of Engineering, Rohtak, India

ABSTRACT

First of all, concerns about climate change and environmental damage, coupled with the depletion of fossil fuels, are driving global shifts towards renewable energy sources. Two especially notable and widely adopted alternatives that have the potential to change our energy landscape and mitigate the effects of global warming are wind and solar energy. As a sustainable resource, wind energy has evolved from simple windmills to intricate, high-tech wind turbines. It includes wind farms that are both onshore and offshore and is characterized by scalability, versatility, and capacity

DOI: 10.4018/979-8-3693-3200-9.ch004

Chapter

Machine Learning-Based Inconsistency Detection in Medical Data

By **Janjhyam Venkata Naga Ramesh, Jayasri Kotti, Priyanka Chandani, Rupal Gupta, Ahateshaam Ansari, T.R. Mahesh, Dharmesh Dhabliya**

Book [Smart Technologies in Healthcare Management](#)

Edition 1st Edition

First Published 2024

Imprint CRC Press

Pages 11

eBook ISBN 9781003330523

Share

You do not have access to this content currently.
Please click 'Get Access' button to see if you or your institution have access to this content.

[GET ACCESS](#)

To purchase a print version of this book for personal use or [request an inspection copy](#) >

[GO TO ROUTLEDGE.COM](#)

ABSTRACT

The application of unsupervised anomaly detection algorithms on medical claims data to uncover probable fraud or anomalies in the claims is investigated in this research. The dataset used in the study is the Medicare Claims Synthetic Public Use Files (SynPUFs), which contains information on beneficiaries, their medical problems, and the claims filed for healthcare services. The paper examines and evaluates the efficacy of three unsupervised anomaly detection methods in detecting anomalies in data. The study's findings show that unsupervised anomaly detection has the potential to be used as a tool for detecting suspicious activity in medical claims data, which can ultimately assist enhance the efficiency and accuracy of healthcare systems.

[< Previous Chapter](#)

[Next Chapter >](#)

[Back to Top](#)

6 Constraints and impediments to the conduct of extracurricular activities in engineering education during the pandemic – an industrial engineering insight

*G.V.S.S. Sharma, M. Srinivasa Rao,
V. Rambabu, G. Sasikumar, Sujana
Chamarty, and C.L.V.R.S.V. Prasad*

Introduction

In the global pandemic clutches, imparting education is a real big challenge (Kumar and Malhotra, 2021). In such a situation, the online medium of instruction emerged as the preferred mode of pedagogy (Grodotzki et al., 2021; Ahmed and Opoku, 2022). Engineering learning requires understanding of the practical experimentation aspect of the subject (Kumar and Sharma, 2017). In such a scenario, the digital twin concept (Rassudov and Korunets, 2020) plays an important role, wherein a balance is struck between online delivery and performing experiments through virtual simulators. Virtual laboratory (Kapilan et al., 2021) emerged as the saviour for imparting practical knowledge to students during Covid-19 pandemic. On the other hand, a research carried out in the University of Sharjah (Mushtaha et al., 2022) revealed that students preferred a blended mode of learning rather than solely depending on either virtual or face-to-face mode of learning. In a developing nation like India, the Covid-19 pandemic acted as an accelerator for implementing many new useful schemes and policies by Government of India promoting open and distant learning (ODL) (Singh and Kumar, 2022).

The prime aspect of engineering education during pandemic is to be humane (Nebrida and Bangud, 2022). Students are in extreme stress both physically and mentally due to continuous exposure to online learning gadgets like smartphones and laptops (Kovid and Kumar, 2022). Faculty must be patient with their students and help them in the mastery of their subjects (Sharaievska et al., 2022). Apart from learning the core engineering subject, the positive coping and emotional well-being of the students through strength-based parenting plays a vital role (Allen et al., 2022). Overcoming the psychological stress is very important to overcome the unusual behaviour, lack of confidence, and improper sleeping patterns during the pandemic

Influence of Stability Improvement Methods Over the Thermal Conductivity of Al_2O_3 -DI Nanofluids

Ravi Kiran Mudidana, Vijay Miditana, and V. Rambabu

Abstract Stability has a dominant role over preserving the thermophysical properties of nanofluids for longer durations from their development. Rapid decrement in the balance between repulsive and attractive forces of nanoparticles can promote the agglomeration in the suspension and deteriorate the thermal performance with the drastic loss of colloidal characteristics. Various techniques such as magnetic stirring, ultrasonication, surfactants, and pH modifiers are applied to improve the chemical stability of nanofluids. But the stability improvement techniques can have significant influence over the thermal conductivity of nanofluids with the effect of intermolecular reactions. The study is aimed to investigate the influence of stability enhancement techniques over the thermophysical properties such as thermal conductivity, viscosity, and density. The nanofluid at different volume fractions such as 0.03, 0.06, 0.09, and 0.12% are developed by dispersing 35 nm sized Al_2O_3 nanoparticles into deionized (DI) water, and stability improvement techniques are applied. The observations made from the performed experimentation are discussed with suitable illustrations.

Keywords Nanofluids · Magnetic stirring · Ultrasonication · Thermophysical properties

R. K. Mudidana (✉) · V. Miditana

Centurion University of Technology and Management, Paralakhemundi, Odisha, India
e-mail: ravikiranmudidana335@gmail.com

V. Rambabu

GMR Institute of Technology, Rajam, Andhra Pradesh, India

Chapter 12

Analysis on Implantable IoT Sensors

C. H. Gangadhar

Prasad V. Potluri Siddhartha Institute of Technology, India

Ramakrishna Kolikipogu

 <https://orcid.org/0000-0002-3253-8476>

Chaitanya Bharathi Institute of Technology, India

K. Santarao

GMR Institute of Technology, India

Benita Christopher

Westford University, UAE

Nidhya M. S.

 <https://orcid.org/0000-0002-1290-4520>

Dayananda Sagar University, India

ABSTRACT

Miniaturization has allowed for greater efficiency and increased power in implantable electronic devices. Glucose levels, blood pressure, and cerebral activity are just few of the many physiological characteristics that may be tracked with the use of biomedical sensors. A body area network, also known as a wireless sensor network, is primarily comprised of a set of sensors operating in tandem inside a human body. The present status of the workmanship in remote biomedical sensor correspondence and controlling frameworks are talked about in this chapter, alongside their expected applications. Additionally, up-to-date integration techniques are outlined for making the sensors smaller and well suited for implantation. For a collection of sensors to function as a BAN, they must first join forces to establish a network. At long last,

DOI: 10.4018/979-8-3693-7868-7.ch012